

INTEGRATED SINK ENHANCEMENT ASSESSMENT

Bio-physical impacts of agricultural land use management systems in EU25

Erwin Schmid, Juraj Balkovic, Elena Moltchanova, Michael Fuchs, Rastislav Skalsky, Katarina Poltarska, Radoslav Bujnovsky, Uwe Schneider, Rainer Baritz, Michael Obersteiner, Brigitte Müller, Vladimir Stolbovoy, Stephane De Cara, Daniel Blank

Final INSEA meeting

Brussels, 21-22 June 2006

Outline

- Problem Statement and Research Objective
- INSEA Approach of bio-physical process Modelling in EU25
- Bio-physical impacts of agricultural land use management systems on
 - Crop Yields
 - Soil Organic Carbon
 - Direct' N2O-N emissions
 - Indirect' N2O-N emissions
 - biomass production (miscanthus and poplar coppice)
- Conclusions

Problem Statement and Research Objective

- Bio-physical Impacts of land use management are usually discontinuous outcomes of stochastic natural processes (erosion, leaching, etc.) under certain local conditions (weather, soil, topography, management, etc.).
- ⇒ Concept of Homogeneous Response Units (HRU)
 + bio-physical process model EPIC
- ⇒ Tool providing spatially and temporally explicit bio-physical impact vectors:
 - Comparative Dynamic Impact Analysis
 - Consistent Linkage with Economic Land use Optimisation Models

Data for bio-physical modelling in EU25

GROUP	DATA SET	DESCRIPTION
climate	MARS	Monitoring of Agriculture with Remote Sensing (50
		km)
	EAST ANGLIA	Tyndall Centre for Climate Change Research (0.5°)
	EMEP	Monitoring and evaluation of the long-range
		transmission of air-pollution in Europe (50 km)
Soil	ESDB v.2	The European soil database v. 2. (10 km, 1 km)
	OC TOP v. 1.2	The map of Organic Carbon in the Topsoils in
		Europe, Ver. 1.2
	HYPRESE	Hydraulic Properties of European Soils (PTF Data)
Topography	GTOPO30	Global digital elevation model (30 arc seconds)
Land Cover	CORINE/PELCOM	Combined CORINE and PELCOM (1 km)
Admin.	AGISCO	Geographic Information System of European
region		Commission data
Reference	SWU	JRS Soil and Waste Unit reference grid (10 k)
grid		
Agricultural statistics	NEW CRONOS	New Cronos Regional Statistics (NUTS2, NUTS1)
	LUCAS	Land use and land cover area frame statistical survey
		project data (Phase I.)
	MARS	Monitoring of Agriculture with Remote Sensing (50
		km)

∢

HRU

delineation

Altitude:

- 1. < 300 m
- 2. 300-600 m
- 3. 600-1100 m
- 4. >1100 m

Texture:

- 1. Coarse
- 2. Medium
- 3. Medium-fine
- 4. Fine
- 5. Very fine

Stoniness:

А Ш

5

Ζ

- 1. Low content
- 2. Medium content
- 3. High content

Slope Class:

- 1. 0-3%
- 2. 3-6%
- 3. 6-10%
- 4. 10-15% 5. ...

Soil Depth:

- 1. shallow
- 2. medium
- 3. deep

Scenario Analysis

- I) Alternative Crop Residue Systems:
- 1) <u>conventional tillage</u> ~5% of crop residues after crop planting
- 2) <u>reduced tillage</u> ~15% of crop residues after crop planting
- 3) <u>minimum tillage</u>
 ~40% of crop residues after crop planting
- II) Biomass Production Systems:
- 4) miscanthus

1

5) poplar coppice

conv. => redu. till

conv. => mini. till

1 1 10

1 480

Lambert-Azimuthal Projection

740

conv. => redu. till

Crop Yield

conv. => mini. till

.ambert-Azimuthal Projection

N2O-N emissions

- IPCC default values for direct and indirect N2O-N emissions
- We base it on
 - nitrification (0.54%), and
 - de-nitrification (11%).
 Khalil, Mary, and Renault (2004) in Soil Biology & Biochemistry.
 - => 'direct' N2O-N emissions

'indirect' N2O-N emissions we use N in leaching (2.5%), run-off (2.5%), volatiliziation (1%)

'direct' N2O-N emissions

'indirect' N2O-N emissions

1 080

1 4 4 0

720

INSEA Development Team

Lambert-Azimuthal Projection

Year 2006

conv. => redu. till

'direct'

conv. => mini. till

from conventional to minimum tillage (10 years simulation)

1 1 1 0

740

INSEA Development Team Year 2006

Lambert-Azimuthal Projection

conv. => redu. till conv. => mini. till 'indirect'

(10 years simulation)

INSEA Development Team Year 2006 Lambert-Azimuthal Projection

Average absolute changes of 'indirect' N2O-N emissions from conventional to minimum tillage (10 years simulation)

1 1 1 0

Lambert-Azimuthal Projection

miscanthus

biomass

poplar coppice

miscanthus direct N20 poplar coppice

miscanthus indirect N20 poplar coppice

Conclusions

- Tool -HRU concept and EPIC- addressing land use and management specific bio-physical impacts spatially and temporally explicit!
- a change in Crop Residue Systems
 - increases SOC by 0.1 and 0.2 t/ha/yr (c.p.)
 - reduces direct N2O-N emissions at EU25 level by 2.4% and 7.2%
 - reduces indirect N2O-N emissions at EU25 level by 6.4% and 8.7%
 - but with +/- effects locally
 - reduces crop yield output by 4% and 8% (c.p.)
- other side effects (increased pesticide use, fertilizer, etc.)
- evaluate environmental impacts of biomass production systems